Datos y Analítica Predictiva

RAG para Conocimiento Específico

Simple Explanation

La IA responde con tus documentos y datos como base, no inventa.

Technical Explanation

Pipelines ETL, vectores + re-ranking, LightRAG-style retrieval, evaluaciones de calidad y privacidad por espacio.

What You Get

  • ETL pipelines for document ingestion
  • Vector database with semantic search
  • Re-ranking for improved relevance
  • Quality evaluations and testing
  • Privacy controls per workspace/tenant
  • Citation tracking and source attribution

Use Cases

  • Internal knowledge base Q&A
  • Customer support documentation
  • Legal/compliance document search
  • Research and analysis tools

Technology Stack

Vectors: Pinecone, Weaviate, or pgvector

Embeddings: OpenAI, Cohere, or open-source

Retrieval: LightRAG-style hybrid search

LLMs: GPT-4, Claude, or self-hosted

Evaluation: RAGAS, custom metrics

Implementation Roadmap

Phase 1: Data Prep (1-2 weeks)

  • Audit document sources
  • Design chunking strategy
  • Set up ETL pipeline

Phase 2: Build RAG (2-3 weeks)

  • Implement vector search
  • Add re-ranking
  • Test retrieval quality

Phase 3: Deploy (1-2 weeks)

  • Production deployment
  • User interface
  • Monitor and optimize
90% Answer Accuracy
<2s Response Time
100% Source Attribution

Pricing

PoC: €8,000 - €15,000

Production: €20,000 - €60,000

Monthly: €1,000 - €5,000 (hosting + usage)

Ready to Get Started?

Let's discuss how this solution can work for your business.